首页> 外文OA文献 >Vertex nomination schemes for membership prediction
【2h】

Vertex nomination schemes for membership prediction

机译:成员预测的顶点提名方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Suppose that a graph is realized from a stochastic block model where one ofthe blocks is of interest, but many or all of the vertices' block labels areunobserved. The task is to order the vertices with unobserved block labels intoa ``nomination list'' such that, with high probability, vertices from theinteresting block are concentrated near the list's beginning. We proposeseveral vertex nomination schemes. Our basic - but principled - setting anddevelopment yields a best nomination scheme (which is a Bayes-Optimalanalogue), and also a likelihood maximization nomination scheme that ispractical to implement when there are a thousand vertices, and which isempirically near-optimal when the number of vertices is small enough to allowcomparison to the best nomination scheme. We then illustrate the robustness ofthe likelihood maximization nomination scheme to the modeling challengesinherent in real data, using examples which include a social network involvinghuman trafficking, the Enron Graph, a worm brain connectome and a politicalblog network.
机译:假设图是从一个随机块模型中实现的,其中一个块是感兴趣的块,但是许多或所有顶点的块标签都未观察到。任务是将具有未观察到的块标签的顶点排序为``提名列表'',以便很有可能来自感兴趣块的顶点集中在列表的开头附近。我们提出了几种顶点提名方案。我们的基本但有原则的设置和发展产生了最佳的提名方案(贝叶斯-最佳语言),还有一个似然最大化提名方案,该方案在有上千个顶点时是可行的,而当数目为顶点足够小,可以与最佳提名方案进行比较。然后,我们使用实例(包括涉及人口贩运的社交网络,安然图,蠕虫脑连接体和政治博客网络)说明真实数据固有的建模挑战的似然最大化提名方案的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号